Amoebas‎ > ‎Math‎ > ‎

Wiki

http://en.wikipedia.org/wiki/Amoeba_(mathematics)

Amoeba (mathematics)

From Wikipedia, the free encyclopedia

The amoeba of
p(z, w)=w-2z-1.\,
The amoeba of
p(z, w)=3z^2\, +5zw+w^3+1.\,
Notice the "vacuole" in the middle of the amoeba.
The amoeba of
P(z, w)=1 + z\, + z^2 + z^3 + z^2w^3\, + 10zw + 12z^2w\, + 10z^2w^2.\,
The amoeba of
P(z, w)=50 z^3\, +83 z^2 w+24 z w^2\, +w^3+392 z^2\, +414 z w+50 w^2\, -28 z +59 w-100.\,

In complex analysis, a branch of mathematics, an amoeba is a set associated with apolynomial in one or more complex variables. Amoebas have applications in algebraic geometry. There is independently a concept of "amoeba order" in set theory.

Contents

 [hide]

[edit]Definition

Consider the function

\mbox{Log}: \left({\mathbb C}\backslash\{0\}\right)^n \to \mathbb R^n

defined on the set of all n-tuples z=(z_1, z_2, \dots, z_n) of non-zero complex numberswith values in the Euclidean space \mathbb R^n, given by the formula

\mbox{Log}(z_1, z_2, \dots, z_n)= (\log |z_1|, \log|z_2|, \dots, \log |z_n|).\,

Here, 'log' denotes the natural logarithm. If p(z) is a polynomial in n complex variables, itsamoeba {\mathcal A}_p is defined as the image of the set of zeros of p under Log, so

{\mathcal A}_p = \left\{\mbox{Log} (z) \, : \, z\in \left({\mathbb C}\backslash\{0\}\right)^n, p(z)=0\right\}.\,

Amoebas were introduced in 1994 in a book by Gelfand, Kapranov, and Zelevinsky[1].

[edit]Properties

  • Any amoeba is a closed set.
  • Any connected component of the complement \mathbb R^n\backslash {\mathcal A}_p is convex.
  • The area of an amoeba of a not identically zero polynomial in two complex variables is finite.
  • A two-dimensional amoeba has a number of "tentacles" which are infinitely long and exponentially narrowing towards infinity.

[edit]Ronkin function

A useful tool in studying amoebas is the Ronkin function. For p(z) a polynomial in ncomplex variables, one defines the Ronkin function

N_p:\mathbb R^n \to \mathbb R

by the formula

N_p(x)=\frac{1}{(2\pi i)^n}\int_{\mbox{Log}^{-1}(x)}\log|p(z)| \,\frac{dz_1}{z_1} \wedge  \frac{d z_2}{z_2}\wedge\cdots \wedge \frac{d z_n}{z_n},

where x denotes x=(x_1, x_2, \dots, x_n). Equivalently, Np is given by the integral

N_p(x)=\frac{1}{(2\pi)^n}\int_{[0, 2\pi]^n}\log|p(z)| \,d\theta_1\,d\theta_2 \cdots d\theta_n,

where

z=\left(e^{x_1+i\theta_1}, e^{x_2+i\theta_2}, \dots, e^{x_n+i\theta_n}\right).

The Ronkin function is convex, and it is affine on each connected component of the complement of the amoeba of p(z).

As an example, the Ronkin function of a monomial

p(z)=az_1^{k_1}z_2^{k_2}\dots z_n^{k_n}\,

with a\ne 0 is

N_p(x) = \log|a|+k_1x_1+k_2x_2+\cdots+k_nx_n.\,

[edit]Set theory

In set theory, the amoeba order is the set of pairs \langle P,\varepsilon\rangle where P is an open subset of the Euclidean unit square [0,1]\times[0,1] with Lebesgue measure \mu(P) < \varepsilon. We order the elements of the amoeba order by \langle P,\varepsilon\rangle\le\langle Q,\varepsilon^*\rangle \iff P\supseteq Q \hbox{ and } \varepsilon\le\varepsilon^*.[2]

[edit]References

  1. ^ Gelfand, I. M.; M.M. Kapranov, A.V. Zelevinsky (1994). Discriminants, resultants, and multidimensional determinants. Boston: Birkhäuser. ISBN 0817636609.
  2. ^ This definition is from Benedikt Löwe, What is ... An Amoeba (2)? [1].

[edit]External links

Comments